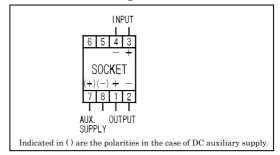
SQUARE ROOT EXTRACTION TRANSDUCER

SRTP1 -

Use

Outputs a DC signal in proportion to square root of various kinds of DC signals.

Features


- 1. Constant voltage/current output.
- 2. Withstand voltage between electric circuit and outer case is AC1, 500V (50/60Hz) for 1 minute, or between input and output is AC1, 500V (50/60Hz) for 1 minute.
- 3. Output less than or equal to 10% shall be clamped at 0%.
- 4. Plus/minus input is not manufacturable.
- 5. Impulse withstands voltage 5kV, 1.2/50µs (between electric circuit and outer case), and positive/negative polarity 3 times each is guaranteed.

Specification

SRTP1-C5F5 $(80 \times 50 \times 121 \text{mm}/350\text{g})$

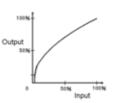
Connection diagram

Input (input resistance or voltage drop)		Output (load resistance)	Auxiliary supply	Common specification
A1 : DC0-10mV (approx.1MΩ)	C1: DC0-10 µ A (100mV) *1	1: DC0-100mV (200)	1 : AC100V±10%,	Tolerance: ± 0.25% *2
A2 : DC0-50mV (approx.1MΩ)	C2: DC0-100 µ A (100mV)	2: DC0-1V (200)	50/60Hz	Response time:
A3 : DC0-60mV (approx.1M Ω)	C3 : DC0-1mA (approx.100Ω)	3: DC0-5V (1k)	2 : AC110V±10%,	0.5sec./99%
A4 : DC0-100mV (approx.1MΩ)	C4 : DC0-5mA (approx.100Ω)	4: DC 0-10V (2k)	50/60Hz	Consumption VA:
A5 : DC0-1V (approx.1MΩ)	C5 : DC0-10mA (approx.100Ω)	5 : DC1-5V (1k)	3 : AC200V±10%,	AC power source:3VA
A6 : DC0-5V (approx.1MΩ)	C6: DC0-16mA (approx.100Ω)	<u>A</u> : DC0-1mA (10k)	50/60Hz	DC power source:4W
$\overline{A7}$: DC0-10V (approx.1M Ω)	C7 : DC4-20mA (approx.100Ω)	B: DC0-5mA(2k)	4 : AC220V±10%,	Weight:
A8 : DC1-5V (approx.1MΩ)	00 : other than those above	C: DC0-10mA (1k)	50/60Hz	AC power source:700g
		D: DC0-16mA (600)	5 : DC24V±10%	DC power source:350g
		E : DC1-5mA (3k)	6: DC48V±10%	
		F: DC4-20mA (750)	0 : other than	
		0 : other than those above	those above	

^{*1.} Circuit voltage 15V for an input of 10 μ A. *2. Tolerance becomes ±0.5% when input voltage is less than 50mV; input current is less than 100 μ A. Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25V occurs on the output terminal.

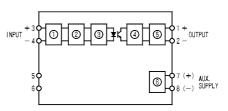
UR-1 precise resistance unit (selling separately)

Please use a UR-1 combined with a square root extraction transducer of voltage input. When changing the square root extraction transducer in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it. (UR-1, the resistance specified)


Operational expression

Input: IB ~ IM Output: OB ~ OM

 $O = \overline{(I-IB)/(IM-IB)} \times (OM-OB) + OB$


IB: Min. input value.IM: Max. input value.OB: Min. output value.OM: Max. output value.I: Input value.

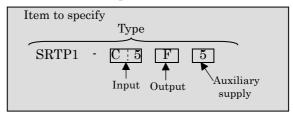
O: Output value.

Input/output relationship graph

Block diagram

Input circuit

Square circuit


Pulse width modulation circuit

Pulse width demodulation circuit

Output circuit

Insulated power source circuit

Purchase specifications

